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Extending Sliced Inverse Regression:
the Weighted Chi-Squared Test

Efstathia Bura and R. Dennis Cook

Sliced inverse regression (SIR) and an associated chi-squared test for dimension have been introduced as a method for reducing the
dimension of regression problems whose predictor variables are normal. In this article the assumptions on the predictor distribution,
under which the chi-squared test was proved to apply, are relaxed, and the result is extended. A general weighted chi-squared test that
does not require normal regressors for the dimension of a regression is given. Simulations show that the weighted chi-squared test is
more reliable than the chi-squared test when the regressor distribution digresses from normality significantly, and that it compares well

with the chi-squared test when the regressors are normal.

KEY WORDS: Dimension estimation; Dimension reduction.

1. INTRODUCTION

The overarching goal of a regression analysis is to
understand how the conditional distribution of the univariate
response Y given a vector X of p predictors depends on the
value assumed by X. Although attention is often restricted
to the mean function E(Y|X) and perhaps the variance
function var(Y|X), in full generality the object of interest is
the conditional distribution of Y|X.

Graphical displays can be quite useful for investigating Y|X,
especially when an adequate parsimoniously parameterized
model is not available and when looking for patterns in
residuals. Dimension reduction without loss of information is
a dominant theme of regression graphics: We try to reduce
the dimension of X without losing information on Y|X and
without requiring a model for Y|X. Borrowing terminology
from classical statistics, we call this sufficient dimension
reduction, which leads to the pursuit of sufficient summary
plots containing all of the information on Y|X available from
the sample.

Sliced inverse regression (SIR) is an innovative method
for constructing summary plots developed by Li (1991).
Informally, SIR provides a basis {b;,...,b,} for R”, and
corresponding SIR predictors {b{X, . .., b X} that are ordered
according to their likely importance to the regression. Thus the
first SIR predictor, blTX, is likely more important than the sec-
ond, bZT X, and so on. Plots of Y versus various combinations
of the SIR predictors can provide useful information on the
regression, with the three-dimensional plot of Y versus the first
two SIR predictors often being the most informative.

It can be helpful to know whether we need to inspect plots
involving all p SIR predictors, or whether we can concentrate
on the first few without losing important information. Li (1991)
provided a testing procedure to help determine the number of
“significant SIR predictors.” The procedure requires that X be
normally distributed, which results in a chi-squared reference
distribution. This requirement can be worrisome in practice,
because deviations from normality can influence the outcome.

In this article we discuss an alternative testing procedure
that is based on the test statistic suggested by Li (1991), but
does not require normally distributed predictors. Relaxing the
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normal requirement results in a reference distribution that is
a weighted sum of chi-squares rather than a chi-square. The
weights are unknown in general and thus must be estimated
from the sample. This alternative procedure can be helpful in
practice for two reasons: (a) it can confirm the indications of
Li’s chi-squared test, increasing confidence in the results, and
(b) it can help decide ambiguous situations.

In Section 2 the regression context is set out, and SIR and
the associated chi-squared test are reviewed. The weighted
chi-squared test is developed in Section 3.1, and a description
of how it can be implemented in practice is given in
Section 3.2. Special cases resulting from the imposition
of additional distributional assumptions are explored in
Section 3.3. There it is also shown that for the chi-squared
test to apply, joint normality of the predictors is not required,
but rather constant second moments of the conditionals of the
predictors suffices. The mussel data are analyzed in Section 4.
A simulation comparison of the two tests is given in Section 5.
We conclude from those simulation results that estimation
of the weights does not compromise the advantages that the
weighted chi-squared test has over the chi-squared test in cases
with nonnormal predictors. The article concludes with a brief
discussion in Section 6.

2. REGRESSION CONTEXT AND
SLICED INVERSE REGRESSION

Sufficient dimension reduction in regression focuses on find-
ing k < p linear combinations p7X, ..., /X that can replace
X without loss of information and without requiring restric-
tive conditions on Y|X. Letting % denote the p x k matrix with
columns m;, we require that

Y 1X|9'X, M

where the notation Il indicates independence. The statement
is thus that Y is independent of X given any value for p”X.
For any vector or matrix e, let S(a) denote its range space
with dimension dim (S (e)). If (1) holds, then it also holds with
7 replaced by any basis for S(%). In this sense, (1) can be
regarded as a statement about S() rather than a statement
about a basis 7 per se. Thus when (1) holds, we follow Li
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(1991, 1992) and call S(n) a dimension-reduction subspace
for the regression of Y on X.

The usual objective of a dimension-reduction analysis is to
infer about a smallest dimension-reduction subspace. Although
there is more than one way to define such a subspace, here we
rely on the central (dimension-reduction) subspace, denoted
by Syx, which was introduced by Cook (1994b, 1996). Syx
is the intersection of all dimension-reduction subspaces for the
regression. It is trivially a subspace, but it is not necessar-
ily a dimension-reduction subspace. The existence of central
subspaces can be ensured by placing fairly weak restrictions
on aspects of the joint distribution of ¥ and X (Cook 1994a,
1996, 1998a,b). We assume throughout that the central sub-
space exists.

The central subspace Syy is in effect a meta-parameter used
to index the conditional distribution of Y given X. We use the
columns of the p x k matrix i to represent a basis for the
central space Syx. The plot of ¥ versus nTX is a minimal
sufficient summary plot (Cook 1998a) for the regression of Y
on X.

Several methods can be used to estimate Syx, or portions
thereof. In this article we are concerned only with SIR,
which we have found to be a useful first method in any
dimension-reduction inquiry.

In this article we work mostly in terms of the standardized

predictor
Z=3"(X-E(X)),

where %, = var(X) > 0. This facilitates development and
involves no loss of generality, because we can always
back-transform to the original scale because Syx = 2;” ’s Y(Z-
Moreover, the SIR predictors reviewed in this section
are invariant under full rank linear transformations of X.
Consequently, summary plots will look the same whether we
work in the scale of X or Z.

Let the columns B; of the p x k matrix 8 be a basis for
the central subspace Sy;. In practice, Z is constructed by
replacing 2., and E(X) with the usual moment estimates. SIR
requires that the conditional expectation E(Z|B”Z) be linear.
This is equivalent to requiring that E(Z|B"Z) = P,Z, where
Py is the orthogonal projection operator for S(f) = Sy with
respect to the usual inner product (Cook 1998b, p. 57). We call
this restriction the linearity condition. The linearity condition
involves only the marginal distribution of Z, and is required
to hold only for the basis . Although minor deviations
from the linearity condition may not matter much, substantial
deviations can produce misleading results.

SIR makes use of the inverse regression subspace Sg,y),
defined as the span of E(Z|Y) as Y varies in its marginal sam-
ple space. Under the linearity condition,

)

If Y is discrete, then this result can be used to justify using
conditional sample means E(Z|Y) as estimates of vectors in the
central subspace. When Y is continuous, Li (1991) suggested
replacing Y with a discrete version Y based on partitioning
the observed range of Y into H fixed, nonoverlapping slices.
By (1), Y LZ|B"Z and thus S S Sy In addition, provided
that H is sufficiently large, Sy = Sy|z, and there is no loss of

Sear) € Syz-
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information when Y is replaced by Y. Using (2), SIR can be
justified on the following line of reasoning:

S{cov[E(ZIV)]} = Spzpp) S Stz € Syjzs (3)
where the first equality follows from proposition 2.7 of Eaton
(1983, p. 75). (See also Cook 1998b, prop. 11.1.)

Thus Sg4,7 is spanned by the eigenvectors corresponding to
the nonzero eigenvalues of V = cov[E(Z | ¥)]. Consequently,
an estimate of SE(ZIVL can be constructed from the estimated

covariance matrix V by using its eigenvectors correspond-
ing to its eigenvalues, which are inferred to be nonzero in the
population.

2.1 Sliced Inverse Regression Algorithm

Given a random sample {(Y;, X])}", from (Y, XT”), begin
by constructing a discrete version Y of Y. The num-
ber of slices H is chosen much like a tuning parameter in
smoothing (see Li 1991 for further discussion). Next, form the
intraslice means Zs, s=1,..., H, of the sample version of the
standardized predictor vector. Finally, form the sample version
V of V= cov[E(Z|Y)],

H
V= fZZ' =777,
s=1

where f; = n,/n is the fraction of observations falling in slice
s and

zn = (—Zl\/z’ e ’ZH\/TH_) (4)

is the p x H matrix of weighted intraslice sample means of the
standardized predictors. Letting ; denote the jth eigenvector
-~ AT
of V, the jth SIR predictor is constructed as Bj Z,j=1,...,p.
Let d = dim(SEQI;,)). The span of the d eigenvectors B;,
j= }, oo d, Qf V that gorrespond to its first d eigenval-
ues Ay == A > > )\I, is an estimate of SE(Z|)7) C Sy|Z.
Under the assumption of normal predictors, Li (1991) proved
that the test statistic

®)

has an asymptotic chi-squared distribution with (p — d)(H —
d — 1) degrees of freedom. Consequently, the number d of
nonzero eigenvalues of V, which is also the dimension of
the subspace S 3, can be estimated as follows: The null
hypothesis that d = j is rejected in favor of the alternative that
d > j+1 when A, is larger than the percentage points of a
chi-squared distribution with (p — j)(H — j — 1) degrees of
freedom.

Other testing techniques that use the same simple nonpara-
metric estimation method as Li (1991) have been developed.
Schott (1994) proposed a test that requires elliptically symmet-
ric regressors and for which the tuning constant is the num-
ber of observations ¢ per slice, as opposed to the number of
slices H of Li (1991). To obtain the asymptotic distribution
of his test statistic, Schott lets ¢ go to infinity. Velilla (1998)
introduced testing method that does not impose restrictions
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on the regressor distribution, where ¢ is fixed and the num-
ber of slices H varies. Ferré (1998) took a model selection
approach to the estimation of dimension by studying the quality
of estimation through a measure of closeness between Sgx
and its estimates.

Our method extends SIR’s applicability by lifting the
normality assumption on the regressors and replacing it by
the minimal requirement of finite second moments. The tuning
parameter is the number of slices and is assumed to be fixed,
as in SIR. The only comparable method among the ones listed
earlier is Velilla’s, because it does not restrict the regressor dis-
tribution. Nevertheless, Velilla uses the number of points per
slice as a tuning parameter and imposes several regularity con-
ditions on both the regressor distribution and the regression
curve E(Y]X).

3. WEIGHTED CHI-SQUARED TEST

Various results on the distribution of Kd are presented in this
section. The development of the general weighted chi-squared
test in Section 3.1 requires only that the data be iid with
finite first two moments. The general logic behind this devel-
opment is similar to that used by Cook (1998a) to derive
the asymptotic distribution of statistics used in the method of
principal Hessian directions (Li 1992). But the details here
are different, because the methods and statistics are different.
Subsequent results given in Section 3.3 require various
additional conditions.

3.1 Development

Letting p, denote the probability that Y is in slice s, the
matrix of weighted intraslice means Z, converges almost surely
to

= (E@Z|Y =1)/pr.... . E(ZIY =H)/py)  (6)

with singular value decomposition

B=I‘1[lg 8]1“;,

where I'; is an orthonormal p x p matrix, I', is an orthonor-
mal H x H matrix, and D is a d x d diagonal matrix with the
positive singular values of B along its diagonal. Recalling that
d = dim(Sgzy)), partition I', = (I';;, I',), where I'; ;2 p x d,
I',: px (p—d), and partition

FT
FT — 21 , 7
A1) .

where T', : d x H, T}, : (H—d) x H. The columns of T',,
form a basis for S 3 = S(V). ,

Given a r x ¢ matrix A = (a,,...,a,), let vec(A) denote
the rc x 1 vector constructed by stacking the columns of A one
after another, that is, vec(A)T = (a1 yeesal).

Let Z, = /n(Z, —B), where Z, and B are defined in (4) and
(6). By the multivariate central hmlt theorem and the multivari-
ate version of Slutsky’s theorem, the pH x 1 vector vec(Z,)

Journal of the American Statistical Association, September 2001

converges to a multivariate normal distribution with mean 0
and covariance matrix A,

vec(Z,) 2, N,y (0,A) asn— oo ®)
It follows from Eaton and Tyler (1994) that the limiting dis-
tribution of the smallest min(p —d, H — d) singular values of
Z, is the same as the limiting distribution of the corresponding
singular values of the (p — d) x (H — d) matrix

ﬁF{22/zF22' (9)

The operation applied to Z, in (9) selects the space spanned
by the eigenvectors corresponding to the p — d smallest eigen-
values of V. This space coincides with the space spanned by
the eigenvectors corresponding to the largest p —d eigenval-
ues of E(cov(Z|Y)) (see Li 1991, remarks 3.1 and 5.3). Hsing
and Carroll (1992) obtained the asymptotic normality of their
estimate of E(cov(Z|Y)), which they constructed using two
observations per slice, by imposing restrictions on both the
regressor and the conditional distribution of X|Y. Zhu and Ng
(1995) generalized their results to more than two observations
per slice.

The asymptotic distribution of A(, is the same as that of the
sum of the squares of the singular values of (9), which can
be expressed as nx trace [F12Z I, (I, Z .I'2,)T]. Therefore,
the asymptotic distribution of Ad is the same as the asymp-
totic distribution of n VCC(F12Z F22)Tvec(l"lT2an"22) By (8),
the limiting distribution of the vector version of (9) is

~ D
Vnvec(T,Z,Ty,) — Netr-ay(o-ay

(07 (F§2®F{2)A(F22®F12))7 (10)

where ® denotes the Kronecker product. Finally, the asymp-
totic distribution of Ad is given in the following theorem.

Theorem 1. Assume that H > d+1 and p > d. Then the
limiting distribution of Ad is the same as that of

(p—d)(H~-d)

c= %

k=1

0, Cy

where the C,’s are independent chi-squared random variables
each with 1 degree of freedom, w, > w, >
are the ordered eigenvalues of

" Z W) (H-d)

Ac= (Fsz®F1T2)A(F22®F12), (11)

and ® denotes the Kronecker product.

Theorem 1 allows for a general test of dimension provided
that we can obtain a consistent estimate of A, from which
to construct estimates of the eigenvalues w,. To this end, it is
useful to investigate the form of A.

A can be represented as an H x H array of p x p matri-
ces A, by part1t10n1ng according to the intraslice averages Z
Lettlng 2, =cov(U] Y = 5) denote the conditional covariance
matrix of a random vector U in slice s, the various sub-matrices
A,, can be computed as follows. For t = s,

A, =np 3 eov(X, - X)x 2
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But
cov(X, —X) = cov(X,) —2cov(X,, X) + cov(X)
—2cov (Xs, > pX A) + %
s s=1
1 1-2
=—<2x+ psles)-
n ny
Thus
Ass =Ipps+(1_2ps)21|s’ (12)
~where
-l ~12
2;zls - zx Exlszx .
For t # s,
A, =nypp, 3 covX, =X, X, -X)3 "
- \/ptps(l z|t z[a) (13)
because

cov(X,~X, X, ~X) = L(%, -3, - %)

Clearly, A can be estimated consistently by substituting sample
versions of p, %, s=1,..., H, and %,. Additionally, under
a hypothesized value of d, l"22 and I';, can be estlmated con-
sistently using the sample versions computed from Z Let A
denote the resulting estimated version of A, and let wk denote
the eigenvalues of AC The limiting distribution of A 4 1s then

consistently estimated to be the same as that of

_ (pmd(H-d)
C= Z

k=1

(14)

0, C,

These results can be used to estimate d = dim(Sgzy,) just as
described for Li’s chi-squared test procedure.

3.2 Test Algorithm

In this section we give a methodological version of the test
of d = j implied by the developments in the previous section:

1. From the singular value decomposition of 2,,, let fl
denote the orthonormal p x p matrix of left singular vec-
tors, and let I', denote the orthonormal H x H matrix of
right singular vectors. This step is the same for all values
of j.

2. Construct l"22 as the matrix of the last H — j columns
of I‘2, and construct l"12 as the last the last p — j columns
of I‘l

3. Construct A by using estimates As, of its submatrices
from (12) for s = ¢ and (13) for s'# ¢.

4. Use the results from steps 2 and 3 to construct AC, and
find its eigenvalues @,.

5. Construct the p value for the weighted chi-squared test as

p value = Pr(5 > observed A i)

999

where the distribution of C is given by (14). There is a
substantial literature to assist in computing the tail prob-
abilities of linear combinations of chi-squared random
variables (see Field 1993 for an introduction).

The linearity condition, an essential part of the justification
for SIR, is not required for Theorem 1, which provides a
general method for inferring about dim (S 7). But the linear-
ity condition is required for (3), which establishes the necessary
relation between the inverse regression subspace and the cen-
tral subspace.

When the number of observations per slice is small, the vari-
ation in the estimated weights (I)Amight mitigate the usefulness
of the estimated distribution of A,. For this reason, it may be
useful to know whether there are special cases in which the lim-
iting distribution simplifies. We address such cases in the next
section. These cases may help us gain a better feeling for the
relative merits of the two test procedures under consideration.

3.3 Special Cases
The following lemma is used later in this section.

Lemma 1. Let g denote the H x 1 vector with elements
JP,s=1,...,H. Then ||g|| =1 and g € S(I'y,), where I'y,
is as defined in (7).

This lemma follows from the singular value decomposition
of B near (6) and the fact that Bg = E(Z) = 0. The next result,
stated as a corollary to Theorem 1, gives the first simplified
result on the distribution of A,.

Corollary 1. Assume that the conditional covariance matri-
ces 3, are constant across slices. Then the limiting distribu-
tion of A, is chi-squared with (p — d)(H — d — 1) degrees of
freedom.

Justification. Because the conditional covariance matrices
are constant, 2, =1, for s =1,..., H. Substituting this into
the form for A given previously yields A =1, — gg’ ®I,, and
thus
—T5,ee' T, ®1,_,

which, from Lemma 1, is a symmetric idempotent matrix. The
conclusion follows because trace(A¢) = (p—d)(H —d —1).

We next develop another set of conditions under which A is
asymptotically chi-squared. Let P,; be the orthogonal projec-
tion operator onto S(I'y;), where I'}; is the basis for SE(Z[Y)
defined near (7) The linearity condition of Theorem 1 is equiv-
alent to E(Z|T"],Z) = P, Z. Also assume that

Ac =1, op-a)

cov(Z|T'],Z) =1,-P,,. (15)

LetT'y,=(v,),t=1,...,H,s=1,...,H—d, denote the
elements of I'y,. Then the (s, k)th block of A in (11) is found
by taking the product of the sth row block of I';, ® ', with A
and the kth column block of I'y, ®I'},:

H H
[Acly = Z Z ’YIS'YIkFTZAIIFIT
It

Fort =1,

FszAnFlz-—F T p+(1— ZPI)F 2z|trl2 (16)
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Next,

3, =E, [cov(ZIT],Z,Y = 1)] +cov, [E(ZIT],Z, Y = 1)]
_EZ|,[cov(Z|I‘ Z)]+covz|,[E(Z|I‘ 7)],

where the second equality follows because ¥ ILZ|I"} | Z. By the
linearity condition and (15), we have

Fsz COVz|r(E(Z|F )Ty, = Covzlr(FIZPIIZ)
and

F1T2 covz|,(Z|l" 2)r, = I‘ (I -P)ry=1,,
Thus
FszAnrlz =(1- pt)Ip—d'

Similarly, LA, = —/pp1, , Using Lemma 1 and
I}y, =1,_,, we obtain the following.

Theorem 2. Let P, be the orthogonal projection operator
onto S(I';,), where I, is the basis for S5 defined near (7).
Assume that the following conditions hold:

1. YJLZ|I‘T

2. E(Z|T] Z) P, Z

3. cov(Z|I‘ Z)=1,-P,.
4. H>d+1andp>d.

Then K,, has an asymptotic chi-squared distribution with (p —
d)(H —d —1) degrees of freedom.

Condition 1 of Theorem 2 ensures that the inverse mean
function depends on Y only via I'[, Z. It implies that SIR will
not miss any part of the central dimension-reduction subspace.
Condition 2 is the linearity assumption, expressed in terms of
the projection onto Sgz 7). Condition 4 is imposed to avoid
trivial cases. Condition 3 is necessary to obtain an asymptotic
chi-squared distribution. It is always satisfied when the original
predictors are independent and I'}; = (I,;, 0), regardless of the
distribution of X.

Conditions 1-3 are obviously satisfied when Y is
stochastically independent of X, so that d = 0. This means that
SIR can be used as a diagnostic test for goodness of fit of a
postulated model by using residuals in place of the response.

Li (1991) computed the asymptotic distribution of Ad for
only the case in which the vector of predictors X has a p-variate
normal distribution, and then conditions 2 and 3 are obviously
satisfied. Further, if condition 3 holds and X is elliptically con-
toured, as might be required to ensure condition 2 for all possi-
ble I',;, then X must be multivariate normal (Cambanis, Huang,
and Simons 1981; Kelker 1970).

If, as required for Corollary 1, Em is constant across slices
and conditions 1, 2, and 4 hold, then it can be shown that
condition 3 is again satisfied. This is an important observation.
Li (1991) said that constant conditional variance across slices is
not required for his result to hold. But in his proof he assumed
normal regressors, and nonconstant variance is not an issue.

In effect, Corollary 1 and Theorem 2 state that the defining
condition that must be met for the chi-squared test to apply is
constant covariance of the conditional distribution of Z|Y, or of
the conditionals of the regressor distribution, and not normality
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of the regressors. In practice, both conditions can be checked
by visually inspecting the scatterplot matrix of the regressors
and the response.

It is also worth pomtmg out that if Sgyy) is a proper
subspace of Sy, then Ad may no longer have a chi-squared
distribution. Of course, even in this case, if the covariance
structure of X is constant across slices, then Corollary 1
implies that Ad has an asymptotic chi-squared distribution with
(p—d)(H —d —1) degrees of freedom.

4. AN ILLUSTRATIVE EXAMPLE:
THE MUSSEL DATA

Consider a regression that arose as part of an ecological
study of New Zealand mussels. The response is a mussel’s
muscle mass M (measured in grams), the edible part of the
mussel. The p =4 predictors are the shell length L, height Ht,
and width W, each in mm, and the shell mass S in g. There
are n = 172 observations. Portions of these data were used for
illustration by Cook and Weisberg (1994) and Cook (1998b).

We noted substantial curvature in the cells of a scatterplot
matrix of the predictors, particularly cells involving shell mass
S. We compensated for this nonlinearity by simultaneously
estimating power transformations of the predictors so that their
joint distribution might be approximately normal on the trans-
formed scale. This resulted in the logarithmic transformation of
S and W. Of course, there is no guarantee that the transformed
predictors are jointly normal. With the linearity condition rea-
sonably satisfied, we proceeded with the SIR analysis.

The chi-squared p values are shown for j =0, 1,2 in the
fourth column of Table 1. The results indicate that d = 2
and thus that the first two SIR predictors are required to
characterize the regression. But we were unable to visually
confirm the need for two SIR predictors by using the corre-
sponding visualization tools described by Cook and Weisberg
(1994, chap. 6) and Cook (1998b, chap. 4), which indicated
instead that only the first SIR predictor is needed. One possi-
ble explanation could involve the assumption of normally dis-
tributed predictors that Li (1991) used in the derivation of his
chi-squared test procedure. We resolved the conflict by using
the weighted chi-squared test described in this article.

The p values from the weighted chi-squared test applied to
the mussel regression are shown in the fifth column of Table 1.
The resulting inference, which agrees with our visual assess-
ment, is that d = 1, suggesting that the chi-squared test may
have responded to nonnormality in the predictors. The esti-
mated limiting distribution of A, that we used for this inference
should be useful when the number of observations per slice is
large enough to allow reasonable estimation of the intraslice

Table 1. Test Results From Application of SIR With H =8 to the
Mussel Regression

Weighted
R Chi-squared Chi-squared
i A; df p value p value
0 164.9 28 0 0
1 29.0 18 .048 .183
2 1.9 10 .292 .290
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covariance matrices 3. We used H = 8 slices, leaving about
22 observations per slice to estimate the 4 x 4 intraslice covari-
ance matrices.

5. SIMULATION RESULTS

We compared the power of the chi-squared test and the
weighted chi-squared test via a simulation study. For all regres-
sion models considered in this section, we used three sample
sizes: n = 100, 200, 300. For each sample size and each dis-
tribution of the regressor vector X, the p values corresponding
to the test statistics for selected dimensions for both tests were
collected over 1,000 replications.

Two two-dimensional models are considered. First, the
response Y is generated according to the model

Y=0@4+X)2+X,+X;)+ .5¢, 17)
where € is a standard normal variate and
X, =W,
W,
X, =V, +—,
2 1+ )
W.
X3=_V1+‘2—2’ (18)
Xy=V, 1V,
and '
X;=V,—-V,.

The only restriction placed on V and W is that they be

independent. The variables Vy, V,, V, are iid, and t4), V3 ~ ¢3),

Vs ~ 1), and W, and W, are iid gamma(.25) random variables.
The second model is

X,

Y= ——+——— + 5S¢, 1
EEN AR (19)
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where € is a standard normal variate and
w
Xl = V3 + V4 + _6_»
w
X2:_V3+V4+F»
w
Xy =V, + 3, (20)
X, =Vi+V,,
and
XS = _Vl + Vz,

where V|, V,, V;, and V, are iid U(—4, 4) random variables and
W is a standard normal random variable.

Model (17) is model (24) of Velilla (1998), and model (19)
is model (6.3) of Li (1991). The central subspace for
both (17) and (19) is two-dimensional. The joint regressor
distributions (18) and (20) satisfy the linearity condition by
construction (Velilla 1998, pp. 1092-1093), even though X
does not have an elliptically contoured distribution in either
case.

The numerical entries of the rows of Tables 2, 3, and 4
corresponding to the test statistics indexed by O and 1 are
empirical estimates of the power of the corresponding test.
They represent the proportion of times the corresponding null
hypothesis d =0 and d = 1 is rejected, when the nominal
significance level is .05 and .01 indicated parenthetically. The
entries for the test statistics indexed by 2 are empirical esti-
mates of the size of the test. The row entries of the tables
throughout this section are to be interpreted in the same or in
an analogous way. Computations were carried out in Arc (Cook
and Weisberg 1999). The p values for the weighted chi-squared
test were calculated with an algorithm of Field (1993).

Figure 1 gives scatterplots of 100 data points generated
according to (17) and (19). The scatterplots reveal the presence

Table 2. Empirical Power and Size for the Chi-Squared and Weighted
Chi-Squared Tests Applied to (17)

X distributed as in (18)

Chi-squared test

Weighted Chi-squared test

n=100
H 5 10 15 5 10 15
Ay 1 (1) 1(1) 1(1) 1 (.998) 1 (.996) 1 (.967)
A, .052 (.014) .07 (.03) 134 (.05) 159 (.034) .225 (.064) 367 (.12)
A, .004 (0) .005 (.001) .007 (0) .018 (.005) .041 (.005) .078 (.01)
n =200
H 10 15 20 10 15 20
A, 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
A, 114 (.052) 171 (.068) .167 (.081) .258 (.103) .357 (.152) 410 (.164)
A, .038 (.004) .01 (0) .003 (0) .038 (.005) .077 (.013) .095 (.015)
n=300
H 15 20 30 15 20 30
A, 101 1(1) 1(1) 1(1) 1(1) 1)
A, 176 (.091) .202 (1) 199 (.102) 41 (172) 479 (.205) 549 (.257)
A, .008 (0) .007 (.001) .005 (0) .061 (.007) .088 (.011) .15 (.033)
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Table 3. Empirical Power and Size for the Chi-Squared and the Weighted
Chi-Squared Tests Applied to (19)

X distributed as in (20)

Chi-square Weighted Chi-square
n=100
H 5 10 15 5 10 15
Ko 1(1) 1 (.999) .998 (.974) 1(1) 1(1) .999 (.996)
A, .182 (.054) 145 (.033) 113 (.032) .255 (.079) .29 (.085) .384 (.143)
A, .006 (0) .009 (.001) .007 (0) .017 (.001) .035 (.005) .09 (.013)
n =200
H 10 15 20 10 15 20
A 1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
X, .301 (.099) .238 (.077) .196 (.055) .457 (.183) 472 (.202) 519 (.24)
A, .008 (0) .019 (.005) .014 (.001) .021 (.006) .064 (.016) .099 (.022)
n =300
H 15 20 30 15 20 30
Ao 1 (1) 1(1) 1(1) .999 (.999) 1(1) 1(1)
A, .379 (.163) .353 (.133) .261 (.085) .604 (.342) 619 (.356) 704 (.413)
Kz .013 (.001) .016 (.002) .008 (0) .052 (.01) .096 (.025) .173 (.049)

of significant heteroscedasticity in the conditionals of the
regressor distribution and the conditional distribution of X|¥.
Thus the main conditions of both Corollary 1 and Theorem 2
appear to be violated. In consequence, the asymptotic distribu-
tion of the test statistic A, is not expected to be chi-squared,
but rather weighted chi-squared.

Tables 2 and 3 indicate that the chi-squared test has
consistently smaller power than the weighted chi-squared test
across sample sizes and choice of number of slices. From
Table 3, it seems that the power of the chi-squared test can
decrease as the number of slices increases, whereas the power
of the weighted chi-squared test increases.

The level of the chi-squared test is too small in all cases of
Tables 2 and 3, suggesting that it may be conservative when the
predictors are not normal. This may partially account for the rela-
tively low power of the chi-squared test. The level of the weighted
chi-squared test increases with the number of slices. This obser-
vation supports the idea that the weighted chi-squared test is
expected to be adversely affected by a small number of observa-
tions per slice, because of the variation in the estimated weights
win (14).

In addition to the results reported here, a number of other dis-
tributions and models were investigated. One conclusion from

these studies is that the chi-squared test is robust when the predic-
tor distribution deviates from normality provided that there is no
significant nonconstant variance in the X conditionals and that
the linearity condition holds. The weighted chi squared test also
performed very well even in cases where the chi squared test has
a clear advantage—namely, when the regressor is a normal vec-
tor, as shown in Table 4, where Y is generated according to (19),
n = 100, and the five predictors are independent standard nor-
mal random variables. The results of Table 4 suggest that the chi-
squared test is conservative even when the predictors are normal.
In addition, the results of Tables 2, 3, and 4 and other results not
reported here suggest that the number of slices for the weighted
chi-squared test should not be more that 5%-7% of the sample
size to keep test levels from being much larger than the nominal
level.

6. DISCUSSION

SIR is a simple and useful first method for dimension reduction
inregression analysis. As such, it seems important to have a well-
grounded inference tool for studying the dimension of the inverse
regression subspace.

Table 4. Empirical Power and Size for the Chi-Squared and the Weighted
Chi-Squared Tests Applied to (19)

X ~Ng(0,15); n=100

Chi-squared test

Weighted chi-squared test

H 5 10 15 5 10 15

Ao .996 (.975) 988 (.933) 976 (.881) 997 (.977) 993 (.952) .992(.944)
A, 435 (.203) 414 (174) 295 (.091) 52 (.259) 585 (.293) 631 (.285)
A, .016 (.001) .013 (.003) .016 (.002) .032 (.003) .056 (.009) .123 (.025)
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Figure 1.

Li (1991) proposed the chi-squared test procedure for situ-
ations when X is normal. In this article we have shown that
normality of the predictors is not necessary for the asymptotic
result to hold, but rather that restrictions should be placed on the
conditional covariance structure of the predictors instead. These
restrictions are trivially satisfied if X has a multivariate normal
distribution, but they also contradict Li’s claim that the asymp-
totic distribution of A ; does not depend on the constant variance
assumption of the conditional distribution of X given Y.

Theorem 1 is the basis for the weighted chi-squared test, which
applies regardless of the predictor distribution. SIR would now
seem to be a more widely applicable dimension-reduction tech-
nique, requiring only the linearity condition.

The general applicability of the weighted chi-squared test
does not seem to be overwhelmed by the variability induced by
estimating the weights required for its computation, provided
that the number of slices does not exceed 5%—7% of the sample
size. As shown in the simulation study, the weighted chi-squared
test performs noticeably better than the chi-squared test when the
regressors are far from normal. In addition, it also compares well
to the chi-squared test in cases where the regressors are normal.

The testing procedure for dimension can be viewed as a
sequence of at most p (the number of predictors) tests. How
this multiple testing affects the overall size of the testing proce-
dure has not been investigated. Approaches similar to those in
multiple testing might be appropriate. Additionally, it should be
mentioned that detection of a direction by a testing procedure
does not guarantee that it will be close enough to the cen-
tral subspace to be useful. Directions detected by the weighted
chi-squared test with a marginal p value may be farther from
the central subspace than directions with a relatively small p
value. Because the chi-squared test is conservative, the direc-
tions that it does detect might be relatively close to the central
subspace. , :

[Received May 1999. Revised June 2000.]

Scatterplots of the Simulated Data. (a) Model (17) with X following (18); (b) model (19) with X following (20).
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