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Extending Sliced Inverse Regression: 
the Weighted Chi-Squared Test 

Efstathia BURAand R. Dennis COOK 

Sliced inverse regression (SIR) and an associated chi-squared test for dimension have been introduced as a method for reducing the 
dimension of regression problems whose predictor variables are normal. In this article the assumptions 011 the predictor distribution, 
under which the chi-squared test was proved to apply, are relaxed, and the result is extended. A general weighted chi-squared test that 
does not require normal regressors for the dimension of a regression is given. Simulations show that the weighted chi-squared test is 
more reliable than the chi-squared test when the regressor distribution digresses from normality significantly, and that it compares well 
with the chi-squared test when the regressors are normal. 

KEY WORDS: Dimension estimation; Dimension reduction 

1, INTRODUCTION 

The overarching goal of a regression analysis is to 
understand how the conditional distribution of the univariate 
response Y given a vector X of p predictors depends on the 
value assumed by X. Although attention is often restricted 
to the mean function E(Y1X) and perhaps the variance 
function var(YIX), in full generality the object of interest is 
the conditional distribution of YIX. 

Graphical displays can be quite useful for investigating Y IX, 
especially when an adequate parsimoniously parameterized 
model is not available and when looking for patterns in 
residuals. Dimension reduction without loss of information is 
a dominant theme of regression graphics: We try to reduce 
the dimension of X without losinn information on YIX and 
without requiring a model for Y % .  Boi-rowing termkology 
from classical statistics, we call this suflcient dimension 
reductiolz, which leads to the pursuit of suflcient sumnzaty 
plots containing all of the information on YIX available from 
the sample. 

Sliced inverse regression (SIR) is an innovative method 
for constructing summary plots developed by Li (1991). 
Informally, SIR provides a basis {b , , . . . ,b,} for [W" and 
corresponding SIRpredictors {bFX, . . . ,biX} that are ordered 
according to their likely importance to the regression. Thus the 
first SIR predictor, bTX, is likely more important than the sec- 
ond, b lX ,  and so on. Plots of Y versus various combinations 
of the SIR predictors can provide useful information on the 
regression, with the three-dimensional plot of Y versus the first 
two SIR predictors often being the most informative. 

It can be helpful to know whether we need to inspect plots 
involving all p SIR predictors, or whether we can concentrate 
on the first few without losing important information. Li (1991) 
provided a testing procedure to help determine the number of 
"significant SIR predictors." The procedure requires that X be 
normally distributed, which results in a chi-squared reference 
distribution. This requirement can be worrisome in practice, 
because deviations from normality can influence the outcome. 

In this article we discuss an alternative testing procedure 
that is based on the test statistic suggested by Li (1991), but 
does not require normally distributed predictors. Relaxing the 
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normal requirement results in a reference distribution that is 
a weighted sum of chi-squares rather than a chi-square. The 
weights are unknown in general and thus must be estimated 
from the sample. This alternative procedure can be helpful in 
practice for two reasons: (a) it can confirm the indications of 
Li's chi-squared test, increasing confidence in the results, and 
(b) it can help decide ambiguous situations. 

In Section 2 the regression context is set out, and SIR and 
the associated chi-squared test are reviewed. The weighted 
chi-squared test is developed in Section 3.1, and a description 
of how it can be implemented in practice is given in 
Section 3.2. Special cases resulting from the imposition 
of additional distributional assumptions are explored in 
Section 3.3. There it is also shown that for the chi-squared 
test to apply, joint normality of the predictors is not required, 
but rather constant second moments of the conditionals of the 
predictors suffices. The mussel data are analyzed in Section 4. 
A simulation comparison of the two tests is given in Section 5. 
We conclude from those simulation results that estimation 
of the weights does not compromise the advantages that the 
weighted chi-squared test has over the chi-squared test in cases 
with nonnormal predictors. The article concludes with a brief 
discussion in Section 6. 

2. REGRESSION CONTEXT AND 
SLICED INVERSE REGRESSION 

Sufficient dimension reduction in regression focuses on find- 
ing k (p linear combinations r]TX, . . . , r]:X that can replace 
X without loss of information and without requiring restric- 
tive conditions on Y IX. Letting r] denote the p x k matrix with 
columns r ] ] ,  we require that 

where the notation lL indicates independence. The statement 
is thus that Y is independent of X given any value for qTX. 

For any vector or matrix a ,  let S ( a )  denote its range space 
with dimension dim(S(a)) .  If (1) holds, then it also holds with 
r ]  replaced by any basis for S(r]). In this sense, (1) can be 
regarded as a statement about S(r]) rather than a statement 
about a basis r] per se. Thus when (1) holds, we follow Li 
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(1991, 1992) and call S (q )  a dimension-reduction subspace 
for the regression of Y on X. 

The usual objective of a dimension-reduction analysis is to 
infer about a smallest dimension-reduction subspace. Although 
there is more than one way to define such a subspace, here we 
rely on the central (dimension-reduction) subspace, denoted 
by Sylx,  which was introduced by Cook (1994b, 1996). SYI, 
is the intersection of all dimension-reduction subspaces for the 
regression. It is trivially a subspace, but it is not necessar-
ily a dimension-reduction subspace. The existence of central 
subspaces can be ensured by placing fairly weak restrictions 
on aspects of the joint distribution of Y and X (Cook 1994a, 
1996, 1998a,b). We assume throughout that the central sub- 
space exists. 

The central subspace SYl, is in effect a meta-parameter used 
to index the conditional distribution of Y given X. We use the 
columns of the p x k matrix q to represent a basis for the 
central space Syl,. The plot of Y versus q T X  is a minimal 
suficierzt summary plot (Cook 1998a) for the regression of Y 
on X. 

Several methods can be used to estimate Syl,, or portions 
thereof. In this article we are concerned only with SIR, 
which we have found to be a useful first method in any 
dimension-reduction inquiry. 

In this article we work mostly in terms of the standardized 
predictor 

Z = z;lt2(X -E(X)) , 

where Z, = var(X) > 0. This facilitates development and 
involves no loss of generality, because we can always 

information when Y is replaced by y. Using (2), SIR can be 
justified on the following line of reasoning: 

where the first equality follows from proposition 2.7 of Eaton 
(1983, p. 75). (See also Cook 1998b, prop. 11.1.) 

Thus SE(,lp) is spanned by the eigenvectors corresponding to 
the nonzero eigenvalues of V = cov[E(Z / F)]. Consequently, 
an estimate of SE(,li;) can be constructed from the estimated 

A 

covariance matrix V by using its eigenvectors coi-sespond- 
ing to its eigenvalues, which are inferred to be nonzero in the 
population. 

2.1 Sliced Inverse Regression Algorithm 

Given a random sample { ( y ,X')}~=Lfrom (Y, XT), begin 
by constructing a discrete version Y of Y. The num-
ber of slices H is chosen much like a tuning parameter in 
smoothing (see Li -1991 for further discussion). Next, form the 
intraslice means Z,, s = 1, . . . ,H, of the sample version of the 
standardized predictor vector. Finally, form the sample version 
9 of V =CO~[E(Z/?)] ,  

where f,= n,/n is the fraction of observations falling in slice 
s and 

back-transform to the original scale because SYI, = x , ~ ' ~ s ~ ~ ~ .  
Moreover, the SIR predictors reviewed in this section 
are invariant under full rank linear transformations of X. 
Consequently, summary plots will look the same whether we 
work in the scale of X or Z. 

Let the columns f3, of the p x k matrix p be a basis for 
the central subspace Syl,. In practice, Z is constructed by 
replacing 2, and E(X) with the usual moment estimates. SIR 
requires that the conditional expectation E(ZIP~Z)  be linear. 
This is equivalent to requiring that E(ZIP~Z)  = PpZ, where 
Pp is the orthogonal projection operator for S(P)  = S y l z  with 
respect to the usual inner product (Cook 1998b, p. 57). We call 
this restriction the linearity condition. The linearity condition 
involves only the marginal distribution of Z,  and is required 
to hold only for the basis P .  Although minor deviations 
from the linearity condition may not matter much, substantial 
deviations can produce misleading results. 

SIR makes use of the inverse regression subspace SE(,ly), 
defined as the span of E(Z/  Y) as Y varies in its marginal sam- 
ple space. Under the linearity condition, 

If Y is discrete, then this result can be used to justify using 
conditional sample means E(z/  Y) as estimates of vectors in the 
central subspace. When Y is continuous, Li (1991) suggested 
replacing Y with a discrete version y based on partitioning 
the observed range of Y into H fixed, nonoverlapping slices. 
By (I), ? ~ ~ z / P ~ zand thus Sy,, 5 Syl, In addition, provided 
that H is sufficiently large, Syl, = SYz,  and there is no loss of 

is the p x H matrix of weighted intraslice sample means of the 
standardized predictors. Letting p j  denote the jth eigenvector 

A T  
of 9,the jth SIR predictor is constructed as P, Z, j = 1, . . . ,p .  

Let d = dim(SE(zIy)).The span of the d eigenvectors P j ,  
A 

j = 1, . . . , cl, of V that correspond to its first d eigenval-
ues A ,  2 . . .  > A ,  > . . .  2 A, is an estimate of SE(,y) Syl,. 
Under the assumption of normal predictors, Li (1991) proved 
that the test statistic 

has an asymptotic chi-squared distribution with ( p  - d ) ( H  -
d - 1) degrees of freedom. Consequently, the number d of 
nonzero eigenvalues of V, which is also the dimension of 
the subspace SE(,,y), can be estimated as follows: The null 
hypothesis that d =j is rejected in favor of the alternative that 
d > j + 1 when 

A 

Aj is larger than the percentage points of a 
chi-squared distribution with (p  - j ) ( H  - j - 1) degrees of 
freedom. 

Other testing techniques that use the same simple nonpara- 
metric estimation method as Li (1991) have been developed. 
Schott (1994) proposed a test that requires elliptically symmet- 
ric regressors and for which the tuning constant is the num- 
ber of observations c per slice, as opposed to the number of 
slices H of Li (1991). To obtain the asymptotic distribution 
of his test statistic, Schott lets c go to infinity. Velilla (1998) 
introduced testing method that does not impose restrictions 
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on the regressor distribution, where c is fixed and the num- 
ber of slices H varies. Fen6 (1998) took a model selection 
approach to the estimation of dimension by studying the quality 
of estimation through a measure of closeness between S,(,ly) 
and its estimates. 

Our method extends SIR'S applicability by lifting the 
normality assumption on the regressors and replacing it by 
the minimal requirement of finite second moments. The tuning 
parameter is the number of slices and is assumed to be fixed, 
as in SIR. The only comparable method among the ones listed 
earlier is Velilla's, because it does not restrict the regressor dis- 
tribution. Nevertheless, Velilla uses the number of points per 
slice as a tuning parameter and imposes several regularity con- 
ditions on both the regressor distribution and the regression 
curve E(Y JX). 

3. WEIGHTED CHI-SQUARED TEST 
A 

Various results on the distribution of A ,  are presented in this 
section. The development of the general weighted chi-squared 
test in Section 3.1 requires only that the data be iid with 
finite first two moments. The general logic behind this devel- 
opment is similar to that used by Cook (1998a) to derive 
the asymptotic distribution of statistics used in the method of 
principal Hessian directions (Li 1992). But the details here 
are different, because the methods and statistics are different. 
Subsequent results given in Section 3.3 require various 
additional conditions. 

3.1 Development 

Letting p, denote the probability that Y is in slice s, the 
A 

matrix of weighted intraslice means Z,, converges almost surely 
to 

with singular value decomposition 

where r1is an orthonormal p x p matrix, T2  is an orthonor- 
ma1 H x H matrix, and D is a d x d diagonal matrix with the 
positive singular values of B along its diagonal. Recalling that 
d = dim(S,(,l,)), partition T ,  = ( T I , ,  r 1 2 ) ,  where I?,,: p x d ,  
r I 2 :  p x (p  - d) ,  and partition 

where r; : d x H ,  rzr2: (H - d)  x H. The columns of T l l  
form a basis for S,(,lF) = S(V). 

Given a r x c matrix A = ( a , ,  . . . ,a,), let vec(A) denote 
the r c  x 1 vector constructed by stacking the columns of A one 
after another, that is, v e ~ ( A ) ~  = (a:, . . . ,a:). 

Let z,,= fi(z,, -B), where z,,and B are defined in (4) and 
(6). By the multivariate central limit theorem and the multivari- 
ate version of Slutsky's theorem, the p H  x 1 vector vec(z,) 
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converges to a multivariate normal distribution with mean 0 
and covariance matrix A, 

It follows from Eaton and Tyler (1994) that the limiting dis- 
tribution of the smallest min(p - d ,  H - d) singular values of 
El,is the same as the limiting distribution of the corresponding 
singular values of the (p  - cl) x ( H  -d )  matrix 

The operation applied to z,,in (9) selects the space spanned 
by the eigenvectors corresponding to the p - d smallest eigen- 
values of V. This space coincides with the space spanned by 
the eigenvectors corresponding to the largest p - d eigenval-
ues of E(cov(Z/Y)) (see Li 1991, remarks 3.1 and 5.3). Hsing 
and Carroll (1992) obtained the asymptotic normality of their 
estimate of E(cov(ZIY)), which they constructed using two 
observations per slice, by imposing restrictions on both the 
regressor and the conditional distribution of XI Y. Zhu and Ng 
(1995) generalized their results to more than two observations 
per slice. 

The asymptotic distribution of is the same as that of the 
sum of the squares of the singular values of (9), which can 
be expressed as n x  trace [ r F 2 ~ , r 2 2 ( r ~ g , , r 2 2 ) T ] .  Therefore, 
the asymptotic distribution of A, is the same as the asymp- 
totic distribution of n ~ e c ( r ~ ~ ~ , , r ~ ~ ) ~ v e ~ ( r ~ ~ ~ , , r ~ ~ ) .By (8), 
the limiting distribution of the vector version of (9) is 

where €3denotes the Kronecker product. Finally, the asymp- 
totic distribution of ;idis given in the following theorem. 

Theorern 1. Assume that H > d + 1 and p > d .  Then the 
limiting distribution of x,is the same as that of 

where the C,'s are independent chi-squared random variables 
each with 1 degree of freedom, w1 > w2 > . . . 2 w(,-,)(,_,) 
are the ordered eigenvalues of 

and 8 denotes the Kronecker product. 

Theorem 1 allows for a general test of dimension provided 
that we can obtain a consistent estimate of A, from which 
to construct estimates of the eigenvalues w,. To this end, it is 
useful to investigate the form of A. 

A can be represented as an H x H array of p x p matri- 
ces A,, by partitioning according to the intraslice averages q. 
Letting ZLlI,= =c o v ( ~ ~ ?s) denote the conditional covariance 
matrix of a random vector U in slice s, the various sub-matrices 
A,, can be computed as follows. For t = s,  

A,, = np,Z,'" cov(X, -X)2,1t2 
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But 

cov(X, -X) =cov(X,) - X) +cov(X)2 COV(X,~, 

Thus 

A,, = Ipp,+ (1 -2~,)2,1,9 (12) 

where 
z:/,=Z;1'2z,x,sz;112 

For t # s ,  

A,, = n a 2 ~ " ~  X, -X)Z,"~ cov(X, -X,  

= &(Ip -XZlt- 2 , , , )  	 (13) 

because 

Clearly, A can be estimated consistently by substituting sample 
versions of p,, Zx1,,  s = 1, . . . ,H ,  and 2,. Additionally, under 
a hypothesized value of cl, I?,, and I?,, can be estimated con- 

A 

sistently using the sample versions computed from z,,.Let A, 
denote the resulting estimated version of A,, and let 6, denote 

A 

the eigenvalues of A,. The limiting distribution of x, is then 
consistently estimated to be the same as that of 

These results can be used to estimate d = dim(SE(zjy))just as 
described for Li's chi-squared test procedure. 

3.2 Test Algorithm 

In this section we give a methodological version of the test 
of d =j implied by the developments in the previous section: 

A A 

1. From the singular value decomposition of Z,,, let T, 
denote the o%honormal p x p matrix of lefi singular vec- 
tors, and let I?, denote the orthonormal H x H matrix of 
right singular vectors. This step is the same for all values 
of j. 

A 

2. Construct 	r,, as the matrix of the last H - j columns 
of F,, and construct F,, as the last the last p -j columns 
of r , .  

A 	 A 

3. Construct A by using estimates A,, of its submatrices 
from (12) for s = t and (13) for s # t .  

4. Use the results from steps 2 and 3 to construct K c ,  and 
find its eigenvalues 6,. 

5 .  	Construct the p value for the weighted chi-squared test as 

where the distribution of Ĉ  is given by (14). There is a 
substantial literature to assist in computing the tail prob- 
abilities of linear combinations of chi-squared random 
variables (see Field 1993 for an introduction). 

The linearity condition, an essential part of the justification 
for SIR, is not required for Theorem 1, which provides a 
general method for inferring about dim(S,(,,p)). But the linear- 
ity condition is required for (3), which establishes the necessary 
relation between the inverse regression subspace and the cen- 
tral subspace. 

When the number of observations per slice is small, the vari- 
ation in the estimated weights <might mitigate the usefulness 
of the estimated distribution of A,. For this reason, it may be 
useful to know whether there are special cases in which the lim- 
iting distribution simplifies. We address such cases in the next 
section. These cases may help us gain a better feeling for the 
relative merits of the two test procedures under consideration. 

3.3 Special Cases 

The following lemma is used later in this section. 

Lemma 1. Let g denote the H x 1 vector with elements 
fi,,s = 1 , .  . . ,H. Then / / g / /= 1 and g E S(I?,,), where I?,, 
is as defined in (7). 

This lemma follows from the singular value decomposition 
of B near (6) and the fact that Bg =E(Z) =0. The next result, 
stated as a corollary to Theorem 1, gives the first simplified 
result on the distribution of ^hd. 

Corollag~1. Assume that the conditional covariance matri- 
ces ZZl ,2 re  constant across slices. Then the limiting distribu- 

tion of A, is chi-squared with (p  - d ) ( H  - d - 1) degrees of 
freedom. 

Just$cation. Because the conditional covariance matrices 
are constant, ZZl,= I, for s = 1, . . . ,H .  Substituting this into 
the form for A given previously yields A =I,, -ggT @I,, and 
thus 

AC= I(~-,)(H-,)- r,T2ggTr22@ Ip-ii, 

which, from Lemma 1, is a symmetric idempotent matrix. The 
conclusion follows because trace(A,) = (p  - d ) ( H  -d ;I). 

We next develop another set of conditions under which A, is 
asymptotically chi-squared. Let P I ,  be the orthogonal projec- 
tion operator onto S(I?,,), where I?,, is the basis for SE(,li;) 
defined near (7). The linearity condition of Theorem 1 is equlv- 
alent to E ( Z ~ ~ ; , Z )  =P l l Z .  Also assume that 

Let I?,, = (y,,), t = 1, . . . ,H ,  s = 1, . . . ,H -d ,  denote the 
elements of I?,,. Then the (s, k)th block of A, in (1 1) is found 
by taking the product of the sth row block of rL @ rT2with A 
and the kth column block of r,,8 r , , :  

F o r t  = 1, 

A 

p value =pr(C^ > observed Aj), 	 rT2Attr12 =rTzr12~t+ (1 -2pt)rT2ZZjtr12. (16) 
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Next. 

Zrlt= y = t)] + C ~ V , ~ , [ E ( Z ~ ~ ~ ~ Z ,  = t)]E, , , [cov(ZlrT1~, ? 

=E , I , C ~ ~ ~ ( Z I ~ T ~ Z > I+covZI , [~(ZIrT1Z?I~ 

where the second equality follows because Y IIZII'~~Z. By the 
linearity condition and (151, we have 

and 

Thus 

rT2Atir12 = (1 -P , ? I ~ - ~ .  

Similarly, rT2~,,rI2 Using 1 and = -mI,_,. Lemma 

rLr2,= we obtain the following. 

Theorenz 2. Let P l l  be the orthogonal projection operator 
onto S ( r 1 , ) ,  where r l ,is the basis for S,(,y) defined near (7). 
Assume that the following conditions hold: 

A 

Then A, has an asymptotic chi-squared distribution with (p  -
d) (H - d - 1) degrees of freedom. 

Condition 1 of Theorem 2 ensures that the inverse mean 
function depends on only via I '~,Z. It implies that SIR will 
not miss any part of the central dimension-reduction subspace. 
Condition 2 is the linearity assumption, expressed in terms of 
the projection onto S,(zlF). Condition 4 is imposed to avoid 
trivial cases. Condition 3 is necessary to obtain an asymptotic 
chi-squared distribution. It is always satisfied when the original 
predictors are independent and r l l= (I,, O), regardless of the 
distribution of X. 

Conditions 1-3 are obviously satisfied when Y is 
stochastically independent of X, so that d =0. This means that 
SIR can be used as a diagnostic test for goodness of fit of a 
postulated model by using residuals in place of the response. 

Li (1991) computed the asymptotic distribution of x, for 
only the case in which the vector of predictors X has a p-variate 
normal distribution, and then conditions 2 and 3 are obviously 
satisfied. Further, if condition 3 holds and X is elliptically con- 
toured, as might be required to ensure condition 2 for all possi- 
ble rl1,then X must be multivariate normal (Cambanis, Huang, 
and Simons 1981; Kelker 1970). 

If, as required for Corollary 1, Z,,, is constant across slices 
and conditions 1, 2, and 4 hold, then it can be shown that 
condition 3 is again satisfied. This is an important observation. 
Li (1991) said that constant conditional variance across slices is 
not required for his result to hold. But in his proof he assumed 
normal regressors, and nonconstant variance is not an issue. 

In effect, Corollary 1 and Theorem 2 state that the defining 
condition that must be met for the chi-squared test to apply is 
constant covariance of the conditional distribution of ZI Y,  or of 
the conditionals of the regressor distribution, and not normality 
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of the regressors. In practice, both conditions can be checked 
by visually inspecting the scatterplot matrix of the regressors 
and the response. 

It is also worth pointing out that if S,(,,,) is a proper 
A 

subspace of SYl,, then A ,  may no longer have a chi-squared 
distribution. Of course, even in this case, if the covariance 
structure ofAX is constant across slices, then Corollary 1 
implies that A, has an asymptotic chi-squared distribution with 
(p  - d ) ( H  - d - 1) degrees of freedom. 

4. AN ILLUSTRATIVE EXAMPLE: 
THE MUSSEL DATA 

Consider a regression that arose as part of an ecological 
study of New Zealand mussels. The response is a mussel's 
muscle mass M (measured in grams), the edible part of the 
mussel. The p =4 predictors are the shell length L, height Ht ,  
and width W, each in mm, and the shell mass S in g. There 
are n = 172 observations. Portions of these data were used for 
illustration by Cook and Weisberg (1994) and Cook (1998b). 

We noted substantial curvature in the cells of a scatterplot 
matrix of the predictors, particularly cells involving shell mass 
S. We compensated for this nonlinearity by simultaneously 
estimating power transformations of the predictors so that their 
joint distribution might be approximately normal on the trans- 
formed scale. This resulted in the logarithmic transformation of 
S and W. Of course, there is no guarantee that the transformed 
predictors are jointly normal. With the linearity condition rea- 
sonably satisfied, we proceeded with the SIR analysis. 

The chi-squared p values are shown for j = 0, 1 , 2  in the 
fourth column of Table 1. The results indicate that d = 2 
and thus that the first two SIR predictors are required to 
characterize the regression. But we were unable to visually 
confirm the need for two SIR predictors by using the cone- 
sponding visualization tools described by Cook and Weisberg 
(1994, chap. 6) and Cook (1998b, chap. 41, which indicated 
instead that only the first SIR predictor is needed. One possi- 
ble explanation could involve the assumption of normally dis- 
tributed predictors that Li (1991) used in the derivation of his 
chi-squared test procedure. We resolved the conflict by using 
the weighted chi-squared test described in this article. 

The p values from the weighted chi-squared test applied to 
the mussel regression are shown in the fifth column of Table 1. 
The resulting inference, which agrees with our visual assess- 
ment, is that d = 1, suggesting that the chi-squared test may 
have responded to nonnormality in the predictors. The esti- 
mated limiting distribution of x,that we used for this inference 
should be useful when the number of observations per slice is 
large enough to allow reasonable estimation of the intraslice 

Table 1. Test Results From Application of SIR With H = 8 to the 
Mussel Regression 

Weighted 
Chi-squared Chi-squared

i 
A

4 d f p value p value 

0 164.9 28 0 0 
1 29.0 18 ,048 ,183 
2 11.9 10 ,292 ,290 
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covariance matrices ZzIs.We used H = 8 slices, leaving about 
22 observations per slice to estimate the 4 x 4 intraslice covari- 
ance matrices. 

5. SIMULATION RESULTS 

We compared the power of the chi-squared test and the 
weighted chi-squared test via a simulation study. For all regres- 
sion models considered in this section, we used three sample 
sizes: n = 100,200,300. For each sample size and each dis- 
tribution of the regressor vector X, the p values corresponding 
to the test statistics for selected dimensions for both tests were 
collected over 1,000 replications. 

Two two-dimensional models are considered. First, the 
response Y is generated according to the model 

where E is a standard normal variate and 

and 

x, = v,-v, .  

The only restriction placed on V and W is that they be 
independent. The variables V,, V2, V, are iid, and t(,), V3 - t(,), 
V, -- t(,), and W, and W, are iid gamma(.25) random variables. 

The second model is 

Y =  
.5 + (X, 

X I  
+ + .5E, 

where E is a standard normal variate and 

W x, =V,+V,+-- ,  
6 

x4= v, + v,, 

and 

x, = -vl + v 2 ,  

where V,, V2, V,, and V4 are iid U(-4,4) random variables and 
W is a standard normal random variable. 

Model (17) is model (24) of Velilla (1998), and model (19) 
is model (6.3) of Li (1991). The central subspace for 
both (17) and (19) is two-dimensional. The joint regressor 
distributions (18) and (20) satisfy the linearity condition by 
construction (Velilla 1998, pp. 1092-1093), even though X 
does not have an elliptically contoured distribution in either 
case. 

The numerical entries of the rows of Tables 2, 3, and 4 
corresponding to the test statistics indexed by 0 and 1 are 
empirical estimates of the power of the corresponding test. 
They represent the proportion of times the corresponding null 
hypothesis d = 0 and d = 1 is rejected, when the nominal 
significance level is .05 and .O1 indicated parenthetically. The 
entries for the test statistics indexed by 2 are empirical esti- 
mates of the size of the test. The row entries of the tables 
throughout this section are to be interpreted in the same or in 
an analogous way. Computations were carried out in Arc (Cook 
and Weisberg 1999). The p values for the weighted chi-squared 
test were calculated with an algorithm of Field (1993). 

Figure 1 gives scatterplots of 100 data points generated 
according to (17) and (19). The scatterplots reveal the presence 

Table 2. Empirical Power and Size for the Chi-Squared and Weighted 
Chi-Squared Tests Applied to (1 7) 

X distributed as in (18) 

Chi-squared test Weighted Chi-squared test 
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Table 3. Empirical Power and Size for the Chi-Squared and the Weighted 
Chi-Squared Tests Applied to (1 9) 

X distributed as in (20) 

Chi-square Weighted Chi-square 

n=100 

of significant heteroscedasticity in the conditionals of the 
regressor distribution and the conditional distribution of XI Y. 
Thus the main conditions of both Corollary 1 and Theorem 2 
appear to be violated. In consequence, the asymptotic distribu- 

A 

tion of the test statistic A, is not expected to be chi-squared, 
but rather weighted chi-squared. 

Tables 2 and 3 indicate that the chi-squared test has 
consistently smaller power than the weighted chi-squared test 
across sample sizes and choice of number of slices. From 
Table 3, it seems that the power of the chi-squared test can 
decrease as the number of slices increases, whereas the power 
of the weighted chi-squared test increases. 

The level of the chi-squared test is too small in all cases of 
Tables 2 and 3, suggesting that it may be conservative when the 
predictors are not normal. This may partially account for the rela- 
tively low power of the chi-squared test. The level of the weighted 
chi-squared test increases with the number of slices. This obser- 
vation supports the idea that the weighted chi-squared test is 
expected to be adversely affected by a small number of observa- 
tions per slice, because of the variation in the estimated weights 
6 in (14). 

In addition to the results reported here, a number of other dis- 
tributions and models were investigated. One conclusion from 

these studies is that the chi-squared test is robust when the predic- 
tor distribution deviates from normality provided that there is izo 
sign$cant nonconstaizt variance in the X coizditionnls and that 
the linearity condition holds. The weighted chi squared test also 
performed very well even in cases where the chi squared test has 
a clear advantage-namely, when the regressor is a normal vec- 
tor, as shown in Table 4, where Y is generated according to (19), 
11 = 100, and the five predictors are independent standard nor- 
mal random variables. The results of Table 4 suggest that the chi- 
squared test is conservative even when the predictors are normal. 
In addition, the results of Tables 2 ,3 ,  and 4 and other results not 
reported here suggest that the number of slices for the weighted 
chi-squared test should not be more that 5%-7% of the sample 
size to keep test levels from being much larger than the nominal 
level. 

6. DISCUSSION 

SIR is a simple and useful first method for dimension reduction 
in regression analysis. As such, it seems important to have a well- 
grounded inference tool for studying the dimension of the inverse 
regression subspace. 

Table 4. Empirical Power and Size for the Chi-Squared and the Weighted 
Chi-Squared Tests Applied to (1 9) 

X -N,(O, I,); n = 100 

Chi-squared test Weighted chi-squared test 

H 5 10 15 5 10 15 



~ ~ ~ ~ ~ , 
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Bura and Cook: The Weighted Chi-Squared Test 

Figure 1. Scatterplots of the Simulated Data. (a) Model (17) with X following (18); (b) model (19) with X following (20). 

Li (1991) proposed the chi-squared test procedure for situ-
ations when X is normal. In this article we have shown that 
normality of the predictors is not necessary for the asymptotic 

to but rather that restrictions be 'laced On the 
conditional covariance structure of the predictors instead. These 
restrictions are triviallv satisfied if X has a multivariate normal 
distribution, but they ilsocontradict ~ i ' ~claim that the asymp-

A 

totic distribution of A ,  does not depend on the constant variance 
assum~tionof the conditional distribution of X given Y .  

1is the basis for the weighted chi-sq;ared test, which 
applies regardless of the predictor distribution. SIR would now 
seem to be a more widely applicable dimension-reduction tech-
nique, requiring only the linearity condition. 

The general applicability of the weighted chi-squared test 
does not seem to be overwhelmed by the variability induced by 
estimating the weights required for its computation, provided 
that the number of slices does not exceed 5%-7% of the sample 
size. As shown in the simulation study, the weighted chi-squared 
test performs noticeably better than the chi-squared test when the 
regressors are far from normal. In addition, it also compares well 
to the chi-squared test in cases where the regressors are normal. 

The testing procedure for dimension can be viewed as a 
sequence of at most p (the number of predictors) tests. How 
this multiple testing affects the overall size of the testing proce-
dure has not been investigated. Approaches similar to those in 
multiple testing might be appropriate. Additionally, it should be 
mentioned that detection of a direction by a testing procedure 
does not guarantee that it will be close enough to the cen-
tral subspace to be useful. Directions detected by the weighted 
chi-squared test with a marginal p value may be farther from 
the central subspace than directions with a relatively small p 
value. Because the chi-squared test is conservative, the direc-
tions that it does detect might be relatively close to the central 
subspace. 

[Received May 1999. Revised June 2000.1 
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